

A-LEVEL CHEMISTRY TRANSITION WORK 2023

Complete the 15 Activities. Check your answers at the back of the pack as you go.

Activity 7 is a project, so no answers supplied

Please hand all work to your teacher at the start of term

CONTENT

- 1. SI units
- 2. Important vocabulary for practical work
- 3. Precise language
- 4. The periodic table
- 5. Research skills
- 6. Relative atomic mass
- 7. Relative formula mass
- 8. Common ions
- 9. Diatomic molecules and formula o common compounds
- 10. Balancing equations
- 11. Moles
- 12. Empirical formula

1.<u>Sl units</u>

Every measurement must have a size (eg 2.7) and a unit (eg metres or °C). Sometimes there are different units available for the same type of measurement, for example ounces, pounds, kilograms, and tonnes are all used as units for mass. To reduce confusion and to help with conversion between different units, there is a standard system of units called the SI units which are used for most scientific purposes. These units have all been defined by experiment so that the size of, say, a metre in the UK is the same as a metre in China. The seven SI base units are

Physical quantity	Usual quantity symbol	Unit	Abbreviation
mass	m	kilogram	kg
length	<i>l</i> or <i>x</i>	metre	m
time	t	second	s
electric current	Ι	ampere	А
temperature	Т	kelvin	К
amount of	n	mole	mol
substance		mole	
luminous intensity	(not used at A-level)	candela	cd

All other units can be derived from the SI base units.

For example, area is measured in square metres (written as m²) and speed is measured in metres per second (written as ms⁻¹).

It is not always appropriate to use a full unit. For example, measuring the width of a hair or the distance from Manchester to London in metres would cause the numbers to be difficult to work with.

Prefixes are used to multiply each of the units. You will be familiar with centi (meaning 1/100), kilo (1000) and milli (1/1000) from centimetres, kilometres and millimetres.

There is a wide range of prefixes. The majority of quantities in scientific contexts will be quoted using the prefixes that are multiples of 1000. For example, a distance of 33 000 m would be quoted as 33 km.

The most common prefixes you will encounter are:

Prefix	Symbol	Multiplication factor		
Tera	Т	1012	1 000 000 000 000	
Giga	G	109	1 000 000 000	
Mega	М	106	1 000 000	
kilo	k	10 ³	1000	
deci	d	10-1	0.1	1/10
centi	с	10-2	0.01	1/100
milli	m	10 -3	0.001	1/1000
micro	μ	10-6	0.000 001	1/1 000 000
nano	n	10-9	0.000 000 001	1/1 000 000 000
pico	р	10-12	0.000 000 000 001	1/1 000 000 000 000
femto	f	10-15	0.000 000 000 000 001	1/1 000 000 000 000 000

Which SI unit and prefix would you use for the following quantities?

- 1. The mass of water in a test tube.
- 2. The time taken for a solution to change colour.
- 3. The radius of a gold atom.
- **4.** The volume of water in a burette.
- 5. The amount of substance in a beaker of sugar.
- 6. The temperature of the blue flame from a Bunsen burner.

Sometimes, there are units that are used that are not combinations of SI units and prefixes. These are often multiples of units that are helpful to use. For example, one litre is 0.001 m^3 .

Acti	Activity 2				
Rew	rite the following in SI units.				
1.	5 minutes				
2.	2 days				
3.	5.5 tonnes				

Activity 3			
rite the following quantities.			
0.00122 metres in millimetres			
104 micrograms in grams			
1.1202 kilometres in metres			
70 decilitres in millilitres			
70 decilitres in litres			
10 cm ³ in litres			

2. Important vocabulary for practical work

3. Precise language

It is essential to use precise language when you write reports and when you answer examination questions. You must always demonstrate that you understand a topic by using the correct and appropriate terms.

For example, you should take care when discussing bonding to refer to the correct particles and interactions between them.

Also, when discussing the interaction between particles in an ionic solid, you would demonstrate a lack of understanding if you referred to the particles as atoms or molecules instead of ions or the interaction between these ions as intermolecular forces rather than electrostatic forces. In this case, use of the incorrect terms would result in the loss of all the marks available for that part of a question.

Take care also to use the word 'chloride' and not 'chlorine' when referring to the ions in a compound such as sodium chloride. The word 'chlorine' should only be used for atoms or molecules of the element.

4. The periodic table

The periodic table of elements is shown on the back page of this booklet. The A-level course will build on what you've learned in your GCSE studies.

Activity 5

On the periodic table on the following page:

- Draw a line showing the metals and non-metals.
- Colour the transition metals blue.
- Colour the halogens yellow.
- Colour the alkali metals red.
- Colour the noble gases green.
- Draw a blue arrow showing the direction of periods.
- Draw a red arrow showing the direction of groups.
- Draw a blue ring around the symbols for all gases.
- Draw a red ring around the symbols for all liquids.

Elements
e of the
lic Tabl
Period
The

	(0) 18 Heiltum 4.0	10 Neon 20.2 18 Ar 39.9	36 Kr Kr krypton 83.8 83.8 54 54 Xenon Xenon 131.3	86 nadom
	(7)	9 19.0 17 17 17 35.5	35 Br bromine 79.9 53 53 I iodine 126.9	85 At astatine
	(6) 16	8 0 0 0 16.0 16 0 32.1 32.1	34 Setentum 79.0 52 Te telturum 127.6	84 Polonium 116 Ivermorium
(2) r Key atomic number symbol up 0.0 r Key atomic number symbol man polomic	(5) 15	7 nitrogen 14.0 15 phosphorus 31.0	33 As arsenic 74.9 51 51 8b antmony 121.8	83 Bismuth 209.0
(2) 2 2 4 4 4 8 6 10 10 10 10 10 10 10 10 10 10 10 10 10	(4) 14	6 carbon 12.0 14 8 sillcon 28.1	32 Ge 72.6 50 Sn 118.7	82 Pb Isad 207.2 114 F1 ff
(2) 2 2 3 4 4 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(3) 13	5 B boron 10.8 13 A1 aluminium 27.0	31 Ga galitum 69.7 49 114.8	81 TI thailium 204.4
(2) 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5		12	30 Znr 2inc 65.4 48 48 cd 112.4	80 Hg Dencury 200.6 112 Cn copernicium
(2) 2 4 5 6 7 7 7 7 7 7 7 7 7 7		5	29 Cu copper 63.5 47 Ag silver 107.9	79 Au 197.0 111 Rg roentgenium
(2) 2 4 5 6 8 8 9.0 9.0 9.0 9.0 9.0 9.0 12 Mg 12 Mg 12 12 12 12 12 12 12 12 12 12		10	28 Ni 58.7 58.7 46 Pd palladium 106.4	78 Pt platinum 195.1 110 DS darmstadtium
(2) 2 4 5 6 8 8 8 9 9 9 9 9 9 12 8 8 8 9 12 8 12 12 12 12 12 12 12 12 12 12		0	27 Co cobalt 58.9 45 Rh rhodium 102.9	77 Ir 192.2 109 Mt metherium
(2) 2 4 8 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0		ω	26 Fe iron 55.8 44 Ru ruthenium 101.1	76 OS osmium 190.2 108 HS hassium
(2) 2 4 8 9.0 9.0 9.0 9.0 9.0 9.0 9.0 12 Mg mame specifium 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 Mg 12 12 Mg 12 12 Mg 12 12 12 12 12 12 12 12 12 12		~	25 Mn manganese 54.9 43 tc technetium	75 Re thenium 186.2 107 Bh bohrium
(2) 2 2 2 3 3 4 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	er mass	و	24 Cr 52.0 42 Mo 95.9	74 W tungsten 183.8 106 Sg seaborgium
(2) 2 2 2 3 3 4 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Key imic numb Symbol e atomic I	Ω.	23 23 50.9 41 80 92.9	73 Ta tantalum 180.9 105 Db dubnium
(2) 2 2 2 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	ato	4	22 T 47.9 40 2 r 21:2 91.2	72 Hf hafnium 178.5 104 Rf rutherfordium
		<i>ო</i>	21 Sc 45.0 39 39 88.9	57–71 lanthanoids 89–103 actinoids
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(1) 1 (1)	3 Itthium 6.9 8 Sodium 23.0	19 K S9.1 37 7 85.5 85.5	55 Cs caesium 132.9 87 87 francium

71 Lu lutetium 175.0	103 Lr lawrencium
70 Yb ytterbium 173.0	102 No nobelium
69 Tm thulium 168.9	101 Md mendelevium
68 Er erbium 167.3	100 Fm fermium
67 Ho ^{holmium} 164.9	99 Es einsteinium
66 Dy ^{dysprosium} 162.5	98 Cf californium
65 Tb terbium 158.9	97 BK berkelium
64 Gd gadolinium 157.2	96 curium
63 Eu europium 152.0	95 Am americium
62 Sm ^{samarium} 150.4	94 Plutonium
61 Pm promethium 144.9	93 Np neptunium
60 Nd neodymium 144.2	92 U uranium 238.1
59 Pr praseodymium 140.9	91 Pa protactinium
58 Ce certum 140.1	90 thorium 232.0
57 La Ianthanum 138.9	89 Ac actinium

© OCR 2020

Chemistry A

Use the periodic table to find the following:

- **1.** The atomic number of: osmium, sodium, lead, chlorine.
- 2. The relative atomic mass of: helium, barium, europium, oxygen.
- **3.** The number of protons in: mercury, iodine, calcium.
- 4. The symbol for: gold, lead, copper, iron.
- 5. The name of: Sr, Na, Ag, Hg.
- 6. THInK can be written using a combination of the symbols for Thorium, Indium and Potassium (ThInK). Which combinations of element symbols could be used to make the following words?

AMERICA, FUN, PIRATE, LIFESPAN, FRACTION, EROSION, DYNAMO

5. Research skills

Activity 7: research activity

Use your online searching abilities to see if you can find out as much about the topic as you can. Remember it you are a prospective A level chemist, you should aim to push your knowledge.

Choose 2 of the following tasks and make a 1-page summary for each one you research

Task 1: The chemistry of fireworks

What are the component parts of fireworks? What chemical compounds cause fireworks to explode? What chemical compounds are responsible for the colour of fireworks?

Task 2: Why is copper sulfate blue?

Copper compounds like many of the transition metal compounds have got vivid and distinctive colours – but why?

Task 3: Aspirin

What was the history of the discovery of aspirin, how do we manufacture aspirin in a modern chemical process?

Task 4: The hole in the ozone layer

Why did we get a hole in the ozone layer? What chemicals were responsible for it? Why were we producing so many of these chemicals? What is the chemistry behind the ozone destruction?

Task 5: ITO and the future of touch screen devices

ITO – indium tin oxide is the main component of touch screen in phones and tablets. The element indium is a rare element and we are rapidly running out of it. Chemists are desperately trying to find a more readily available replacement for it. What advances have chemists made in finding a replacement for it?

6. Relative atomic mass (Ar)

If there are several isotopes of an element, the relative atomic mass will take into account the proportion of atoms in a sample of each isotope. For example, chlorine gas is made up of 75% of chlorine-35 $^{35}_{17}Cl$ and 25% of chlorine-37 $^{37}_{17}Cl$. The relative atomic mass of chlorine is therefore the mean atomic mass of the atoms in a sample, and is calculated by:

$$A_r = \left(\frac{75.0}{100} \times 35\right) + \left(\frac{25.0}{100} \times 37\right) = 26.25 + 9.25 = 35.5$$

Activity 8 Use the example above to help you work out the answers to the following questions 1. What is the relative atomic mass of Bromine, if the two isotopes, ⁷⁹Br and ⁸¹Br, exist in equal amounts? 2. Neon has three isotopes. ²⁰Ne accounts for 90.9%, ²¹Ne accounts for 0.3% and the last 8.8% of a sample is ²²Ne. What is the relative atomic mass of neon? 3. Magnesium has the following isotope abundances: ²⁴Mg: 79.0%; ²⁵Mg: 10.0% and ₂₆ Mg: 11.0%. What is the relative atomic mass of magnesium? **4.** Boron has two isotopes, ¹⁰B and ¹¹B. The relative atomic mass of boron is 10.8. What are the percentage abundances of the two isotopes? 5. Copper's isotopes are ⁶³Cu and ⁶⁵Cu. If the relative atomic mass of copper is 63.5, what are the relative abundances of these isotopes?

7. Relative formula mass (Mr)

Carbon dioxide, CO_2 has 1 carbon atom (A_r = 12.0) and two oxygen atoms (A_r = 16.0). The relative formula mass is therefore

 $M_r = (12.0 \times 1) + (16.0 \times 2) = 44.0$

Magnesium hydroxide Mg(OH)₂ has one magnesium ion ($A_r = 24.3$) and two hydroxide ions, each with one oxygen ($A_r = 16.0$) and one hydrogen ($A_r = 1.0$). The relative formula mass is therefore:

 $M_r = (24.3 \times 1) + (2 \times (16.0 + 1.0)) = 58.3$

Act	Activity 9				
	one of the periodic tables in this booklet to calculate the relative formula mass of the owing compounds your answers should all be to 1dp:				
1.	Magnesium oxide MgO				
2.	Sodium hydroxide NaOH				
3.	Copper sulfate CuSO ₄				
4.	Ammonium chloride NH ₄ Cl				
5.	Ammonium sulfate (NH ₄) ₂ SO ₄				

8. Common ions

Positive ions (cations)		Negative ions (anions)		
Name	Symbol	Name	Symbol	
Hydrogen	H+	Hydroxide	OH-	
Sodium	Na+	Chloride	CI-	
Lithium	Li+	Bromide	Br-	
Silver	Ag+	Oxide	O2-	
Magnesium	Mg ₂₊	Hydrogencarbonate	HCO3-	
Calcium	Ca2+	Nitrate	NO ₃ -	
Zinc	Zn ₂₊	Sulfate	SO 42-	
Aluminium	Al ₃₊	Carbonate	CO ₃₂ -	
Ammonium	NH ₄ +	Phosphate	PO ₄₃ -	

Some elements have more than one charge. For example, iron can form ions with a charge of +2 or +3. Compounds containing these are named Iron(II) and Iron(III) respectively. Other common elements with more than one charge include:

Chromium(II) and chromium(III) Copper(I) and copper(II) Lead(II) and lead(IV)

Activity 10

On the periodic table on the following page, colour elements that form one atom ions (eg Na⁺ or O^{2-}) according to the following key:

Charge	Colour
+1	red
+2	yellow
+3	green
-1	blue
-2	brown

Ionic compounds must have an overall neutral charge. The ratio of cations to anions must mean that there is as many positives as negatives. For example:

NaCl		Mg	0	MgC	:l ₂
					CI⁻
Na⁺	Cl⁻	Mg ²⁺	02-	Mg ²⁺	CI⁻
+1	-1	+2	-2	+2	-2

Work out what the formulas for the following ionic compounds should

be:

- 1. Magnesium bromide
- 2. Barium oxide
- 3. Zinc chloride
- 4. Ammonium chloride
- 5. Ammonium carbonate
- 6. Aluminium bromide
- 7. Iron(II) sulfate

8. Iron(III) sulfate

9. Diatomic molecules and formula of common

<u>compounds</u>

A number of atoms exist in pairs as diatomic (two atom) molecules. The common ones that you should remember are:

Hydrogen H₂, Oxygen O₂, Fluorine F₂, Chlorine Cl₂, Bromine Br₂, Nitrogen N₂ and Iodine I₂

There are several common compounds from your GCSE studies that have names that do not help to work out their formulas. For example, water is H_2O .

Act	ivity 12: Research activity
Use	the internet or your knowledge to state the formulas of the following compounds?
1.	Methane
2.	Ammonia
3.	Hydrochloric acid
4.	Sulfuric acid
5.	Sodium hydroxide
6.	Potassium manganate(VII)
7.	Hydrogen peroxide

10. <u>Balancing equations</u>

Chemical reactions never create or destroy atoms. They are only rearranged or joined in different ways. When hydrogen and oxygen react to make water:

hydrogen + oxygen \rightarrow water

There are two hydrogen atoms on both sides of this equation, but two oxygen atoms on the left and only one on the right. This is not balanced.

This can be balanced by writing:

 $2H_2 + O_2 \rightarrow 2H_2O$

The reactants and products in this reaction are known and you can't change them. The compounds can't be changed, and neither can the subscripts because that would change the compounds. So, to balance the equation, a number must be added in front of the compound or element in the equation. This is a coefficient. Coefficients show how many atoms or molecules there are.

Act	ivity 13						
info	Write balanced symbol equations for the following reactions. You'll need to use the information on the previous pages to work out the formulas of the compounds. Remember some of the elements may be diatomic molecules.						
1.	Aluminium + oxygen → aluminium oxide						
2.	Methane + oxygen → carbon dioxide + water						
3.	Aluminium + bromine → aluminium bromide						
4.	Calcium carbonate + hydrochloric acid $ ightarrow$ calcium chloride + water + carbon dioxide						
5.	Aluminium sulfate + calcium hydroxide $ ightarrow$ aluminium hydroxide + calcium sulfate						
	Harder:						
6.	Silver nitrate + potassium phosphate $ ightarrow$ silver phosphate + potassium nitrate						
	More challenging:						
7.	Potassium manganate(VII) + hydrochloric acid →						
	potassium chloride + manganese(II) chloride + water + chlorine						

11. <u>Moles</u>

A mole is the amount of a substance that contains 6.02×10^{23} particles. The mass of 1 mole of any substance is the relative formula mass (M_r) in grams. Examples:

One mole of carbon contains 6.02×10^{23} particles and has a mass of 12.0 g Two moles of copper contain 12.04×10^{23} particles, and has a mass of 127 g 1 mole of water contains 6.02×10^{23} particles and has a mass of 18 g The amount in moles of a substance can be found by using the formula:

Amount in moles of a substance = $\frac{\text{mass of substance}}{\text{relative formula mass}}$

Activity 14								
ill in the table.								
Substance	Mass of substance	Amount/moles	Number of particle					
Helium			18.12 × 10 ²³					
Chlorine	14.2							
Methane		4						
Sulfuric acid	4.905							

12. Empirical formula

(You may not have covered this at GCSE - give it a go and we will go over it again at A level) If you measure the mass of each reactant used in a reaction, you can work out the ratio of atoms of each reactant in the product. This is known as the empirical formula. This may give you the actual chemical formula, as the actual formula may be a multiple of this. For example, hydrogen peroxide is H2O2 but would have the empirical formula HO.

Use the following to find an empirical formula:

- 1. Write down reacting masses
- 2. Find the amount in moles of each element
- 3. Find the ratio of moles of each element

Example: A compound contains 2.232 g of ion, 1.284 g of sulfur and 1.920 g of oxygen. What is the empirical formula?

Element	Iron	Sulfur	Oxygen
mass/relative atomic mass	2.232/55.8	1.284/32.1	1.920/16.0
Amount in moles	0.040	0.040	0.120
Divide by smallest value	0.040/0.040	0.040/0.040	0.120/0.040
Ratio	1	1	3

So the empirical formula is FeSO₃.

If the question gives the percentage of each element instead of the mass, replace mass with the percentage of an element present and follow the same process.

Work out the following empirical formulas:

- 1. The smell of a pineapple is caused by ethyl butanoate. A sample is known to contain only 0.180 g of carbon, 0.030 g of hydrogen and 0.080 g of oxygen. What is the empirical formula of ethyl butanoate?
- 2. Find the empirical formula of a compound containing 0.0578 g of titanium, 0.288 g of carbon, 0.012 g of hydrogen and 0.384 g of oxygen.
- **3.** 300 g of a substance are analysed and found to contain only carbon, hydrogen and oxygen. The sample contains 145.9 g of carbon and 24.32 g of hydrogen. What is the empirical formula of the compound?
- 4. Another 300 g sample is known to contain only carbon, hydrogen and oxygen. The percentage of carbon is found to be exactly the same as the percentage of oxygen. The percentage of hydrogen is known to be 5.99%. What is the empirical formula of the compound?

Answers to activities in Transition guide

You can find answers to the activities in the Transition guide in the tables below.

Act	Activity 1					
1.	Grams					
2.	Seconds					
3.	Nanometres/picometres					
4.	cm ³					
5.	Mole					
6.	kelvin/kilo kelvin					

- 1. 300 seconds
- 2. 172 800 seconds
- 3. 5500 kg/5.5 \times 10³ kg

Activity 3

- 1. 1.22 mm
- 2. 0.000 104 g
- 3. 1120.2 m
- 4. 7000 ml
- 5. 7 l (also written as 7 dm³)
- 6. 0.01 l (0.01 dm³)

It is worth stressing to students here that in Chemistry, dm³ is used rather than litres.

Join the boxes to link the word to its definition.

- 1. Os: 76 Na: 11 Pb: 82 Cl: 17
- 2. He: 4.0 Ba: 137.3 Eu: 152.0 O: 16.0
- 3. Hg: 80 I: 53 Ca: 20
- 4. Gold: Au Lead: Pb Copper: Cu Iron: Fe
- 5. Sr: Strontium Na: Sodium Ag: Silver Hg: Mercury
- 6. AMERICA: Americium; Erbium; Iodine; Calcium
 FUN: Fluorine; Uranium; Nitrogen
 PIRATE: Phosphorus; Iodine; Radium; Tellurium
 LIFESPAN: Lithium; Iron; Sulfur; Protactinium; Nitrogen
 FRACTION: Francium; Actinium; Titanium; Oxygen; Nitrogen
 EROSION: Erbium; Oxygen; Sulfur; Iodine; Oxygen; Nitrogen
 DYNAMO: Dysprosium; Sodium; Molybdenum

Activity 7 is an individual project.

Activity 8

- 1. 80.0
- 2. 20.179 (20.2)
- 3. 24.32 (24.3)
- 4. 20% ¹⁰B and 80% ¹¹B
- 5. 75% ⁶³Cu and 25% ⁶⁵Cu

Act	ivity 9
1.	40.3
2.	40.0
3.	159.6
4.	53.5
5.	132.1

(1)	(2)	. 3		Key		-	1.0 H hydrogen 1					(13)	(14)	(15)	(16)	(17)	(18) 4.0 He helium 2
6.9 Li lithium 3	9.0 Be beryllium 4		12-51 - 52	ive atomic symbol name ic (proton) r								10.8 B boron 5	12.0 C carbon 6	14.0 N nitrogen 7	16.0 O oxygen 8	19.0 F fluorine 9	20.2 Ne neon 10
23.0 Na sodium 11	24.3 Mg magnesium 12	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	27.0 Al aluminium 13	28.1 Si silicon 14	31.0 P phosphorus 15	32.1 S sulfur 16	35.5 Cl chlorine 17	39.9 Ar argon 18
39.1 K potassium	40.1 Ca calcium	45.0 Sc scandium	47.9 Ti titanium	50.9 V vanadium	52.0 Cr chromium	54.9 Mn manganese	55.8 Fe iron	58.9 Co cobalt	58.7 Ni nickel	63.5 Cu copper	65.4 Zn zinc	69.7 Ga gallium	72.6 Ge germanium	74.9 As arsenic	79.0 Se selenium	79.9 Br bromine	83.8 Kr krypton
19 85.5 Rb rubidium	20 87.6 Sr strontium	21 88.9 Y yttrium	22 91.2 Zr zirconium	23 92.9 Nb niobium	24 96.0 Mo molybdenum	25 [98] Tc technetium	26 101.1 Ru ruthenium	27 102.9 Rh rhodium	28 106.4 Pd palladium	29 107.9 Ag silver	30 112.4 Cd cadmium	31 114.8 In indium	32 118.7 Sn tin	33 121.8 Sb antimony	34 127.6 Te tellurium	35 126.9 iodine	36 131.3 Xe xenon
37 132.9 Cs caesium	38 137.3 Ba barium	39 138.9 La *	40 178.5 Hf hafnium	41 180.9 Ta tantalum	42 183.8 W tungsten	43 186.2 Re rhenium	44 190.2 Os osmium	45 192.2 Ir iridium	46 195.1 Pt platinum	47 197.0 Au gold	48 200.6 Hg mercury	49 204.4 Tl thallium	50 207.2 Pb lead	51 209.0 Bi bismuth	52 [209] Po polonium	53 [210] At astatine	54 [222] Rn radon
55 [223] Fr francium 87	56 [226] Ra radium 88	57 [227] Ac † actinium 89	72 [267] Rf rutherfordium 104	73 [268] Db dubnium 105	74 [271] Sg seaborgium 106	75 [272] Bh bohrium 107	76 [270] Hs hassium 108	77 [276] Mt meitnerium 109	78 [281] Ds darmstadium 110	79 [280] Rg roentgenium 111	Bit						
* 58 – 7	1 Lantha	nides	3	140.1 Ce cerium 58	140.9 Pr praseodymium 59	144.2 Nd neodymium 60	[145] Pm promethium 61	150.4 Sm samarium 62	152.0 Eu europium 63	157.3 Gd gadolinium 64	158.9 Tb terbium 65	162.5 Dy dysprosium 66	164.9 Ho holmium 67	167.3 Er erbium 68	168.9 Tm thulium 69	173.1 Yb ytterbium 70	175.0 Lu lutetium 71
† 90 - 103 Actinides 232.0 Th thonum 90 231.0 Pa 91			238.0 U uranium 92	[237] Np neptunium 93	[244] Pu plutonium 94	[243] Am americium 95	[247] Cm curium 96	[247] Bk berkelium 97	[251] Cf californium 98	[252] Es einsteinium 99	[257] Fm fermium 100	[258] Md mendelevium 101	[259] No nobelium 102	[262] Lr lawrencium 103			
This sł	This shows only compounds with a single ionic form. GCSE students would be expected to know																

Activ	vity 11
1.	MgBr ₂
2.	BaO
3.	ZnCl ₂
4.	NH ₄ Cl
5.	(NH ₄) ₂ CO ₃
6.	AlBr ₃
7.	FeSO ₄
8.	Fe ₂ (SO ₄) ₃

Activ	vity 12
1.	CH ₄
2.	NH ₃
3.	HCI
4.	H ₂ SO ₄
5.	NaOH
6.	KMnO ₄
7.	H ₂ O ₂

- 1. $4AI + 3O_2 \rightarrow 2AI_2O_3$
- 2. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
- 3. $2AI + 3Br_2 \rightarrow 2AIBr_3$
- 4. $CaCO_3 + 2HCI \rightarrow CaCl_2 + H_2O + CO_2$
- 5. $Al_2(SO_4)_3 + 3Ca(OH)_2 \rightarrow 2Al(OH)_3 + 3CaSO_4$
- 6. $3AgNO_3 + K_3PO_4 \rightarrow Ag_3PO_4 + 3KNO_3$
- 7. $2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnCl_2 + 8H_2O + 5Cl_2$

Activity 14							
Substance	Mass of substance/g	Amount/moles	Number of particles				
Helium	12.0	3	1.812 × 10 ²⁴				
Chlorine	14.2	0.2	1.204×10^{23}				
Methane	64.0	4	2.408×10^{24}				
Sulfuric acid	4.905	0.05	3.0 × 10 ²²				

1	
_	L .

L			
Element	Carbon	Hydrogen	Oxygen
Mass/relative atomic mass	0.180/12.0	0.030/1.0	0.080/16.0
Amount in moles	0.015	0.030	0.005
Divide by smallest value	0.015/0.005	0.030/0.005	0.005/0.005
Ratio	3	6	1

Empirical formula: C_3H_6O (Chemical formula: $C_6H_{12}O_2$).

2.

Element	Titanium	Carbon	Hydrogen	Oxygen
mass/relative atomic mass	0.0578/ 47.9	0.288/12.0	0.012/1.0	0.384/16.0
Amount in moles	0.00121	0.024	0.012	0.024
Divide by smallest value	0.00121/ 0.00121	0.024/ 0.00121	0.012/ 0.00121	0.024/ 0.00121
Ratio	1	19.8	9.9	19.8

Empirical formula: TiC₂₀H₁₀O_{20.}

3.

Element	Carbon	Hydrogen	Oxygen
Mass/relative atomic mass	145.9/12.0	24.32/1.0	129.78/16.0
Amount in moles	12.16	24.3243	8.11
Divide by smallest value	12.16/8.11	24.32/8.11	8.11/8.11
Ratio	1.5	3	1

Empirical formula: C₃H₆O₂

4. Element	Carbon	Hydrogen	Oxygen
% mass	(100-5.99)/2 =47.005	5.99	(100-5.99)/2 =47.005
% mass/relative atomic mass	3.9171	5.99	2.9378
Divide by smallest value	1.33	2.04	1
Ratio	4	6	3